Multi-objective Optimization of Parallel Manipulator Using Global Indices

F.A. Lara-Molina and J.M. Rosario *
UNICAMP
Campinas-SP, Brazil

D. Dumur†
SUPELEC
Giff sur Yvette-Cedex, France

Abstract—The paper addresses the optimal design of parallel manipulators based on multi-objective optimization. The objective functions used are: Global Conditioning Index (GCI), Global Payload Index (GPI), and Global Gradient Index (GGI). These indices are evaluated over a required workspace which is contained in the complete workspace of the parallel manipulator. The objective functions are optimized simultaneously to improve dexterity over a required workspace, since single optimization of an objective function may not ensure an acceptable design. A Multi-Objective Evolution Algorithm (MOEA) based on the Control Elitist Non-dominated Sorting Genetic Algorithm (CENSGA) is used to find the Pareto front.

Keywords: Multi-objective Genetic Algorithm, Optimal design, Parallel manipulator, Stewart-Gough Platform

I. Introduction

Parallel manipulators have closed kinematic chains; due to this feature, they have some advantages over serial manipulators. Among these advantages are: low inertia, high stiffness, high speed, and better position accuracy. However, parallel manipulators have some disadvantages: a reduced workspace and kinematic singularities inside the complete workspace.

The optimal design problem of parallel manipulators consists in determining a set of design parameters of the parallel manipulator to guarantee an optimal criterion. Many works have addressed the optimal design of parallel manipulators with different approaches depending on the characteristics to be optimized. In those works, the main approach has been to solve the optimal design problem using diverse methods, in which the optimum criteria are: the maximum dexterity [1], the maximum stiffness [2], the minimum position error in the movable platform [3], the maximum velocities in the platform [4] and the required maximum workspace [5][6][7].

Proposing new synthesis methods for the optimal design of parallel manipulators ensures high kinematic performance for the growing number of new applications. Optimal design often depends on some required characteristics, such as required workspace or limits on the dimensions of the manipulator. For this purpose, it is interesting to evaluate simultaneously dexterity measures to improve kinematic performance. Aiming to achieve good dexterity, high payload capability, and uniformity of the dexterity over a required workspace, an optimal design method is proposed to optimize the geometric architecture of a parallel manipulator.

In the same way, single-objective optimization (SOO) is not enough to ensure an optimal design of parallel manipulators. For this reason, some authors have developed new performance indices that combine different kinematic measures, for example: Miller [7] used an index that combines dexterity and workspace. Zhang [4] proposed a global index to measure the joint velocity in an imposed workspace.

In this work, we propose a multi-objective design of kinematic parallel manipulators based on Multi-Objective Evolutionary Algorithm (MOEA). For this purpose, three kinematic performance indices are the objective functions for optimization, these indices are: Global Conditioning Index (GCI), Global Payload Index (GPI), and Global Gradient Index (GGI). The multi-objective optimization (MOO) is performed using CENSGA to search for the Pareto front which is a set of optimal design parameters. Thus, two simulations are performed to demonstrate the design procedure. In the first simulation, a GAs is used to maximize the GCI and examine the behavior of the other indices, GGI, and GPI. The second simulation, CESGA is used to reach the optimal design parameters.

This paper is organized in several sections. Section II presents the kinematic and geometric modeling, to introduce the design parameters. In section III, the three global performance indices are presented: GCI, GPI, and GGI. In section IV, the optimization problem of parallel manipulator is formulated. Section V presents the simulations and results. Finally Section VI covers the conclusion.

II. Kinematic and Geometric Modeling

Fig. 1 shows the Stewart-Gough platform. Six identical legs connect the movable platform to the fixed base by universal joints denoted by \(U \) at points \(A_i \), and spherical joints denoted by \(S \) at points \(B_i \), \(i = 1, 2, ..., 6 \), respectively. Both the universal and spherical joints are passive. Each leg has an upper and a lower member connected by a prismatic joint denoted by \(P \). The prismatic joint is activated to extend/retract the leg. The universal joint can be substituted by a spherical joint without changing the motion of the movable platform.

The six degrees of freedom (DOF) in the movable platform are linear and angular motions. Linear motions con-
sists of longitudinal motions in \(x - y - z\) axes. Angular motions are expressed as Euler angles with respect to \(x - y - z\) axes.

Two coordinate frames \(\{A\}\) and \(\{B\}\) are attached to the movable and fixed based platforms respectively. The vector \(b_1 = [b_{ix} \ b_{iy} \ b_{iz}]^T\) describes the position of the reference point \(B_1\) with respect to the frame \(\{B\}\); thus \(b_1\) is expressed as:

\[
b_1 = \begin{bmatrix} r_b \cos(\psi_i) \\ r_b \sin(\psi_i) \\ 0 \end{bmatrix} = \begin{bmatrix} b_{ix} \\ b_{iy} \\ b_{iz} \end{bmatrix} \quad a_1 = \begin{bmatrix} r_a \cos(\Psi_i) \\ r_a \sin(\Psi_i) \\ 0 \end{bmatrix} = \begin{bmatrix} a_{ix} \\ a_{iy} \\ a_{iz} \end{bmatrix}
\]

(1)

\[
\psi_i = \frac{i \pi}{3} - \frac{\phi_b}{2} \quad \Psi_i = \frac{i \pi}{3} - \frac{\phi_a}{2} \quad i = 1, 3, 5
\]

\[
\psi_i = \psi_{i-1} + \phi_b \quad \Psi_i = \Psi_{i-1} + \phi_a \quad i = 2, 4, 6
\]

In the same way, the vector \(a_i = [a_{ix} \ a_{iy} \ a_{iz}]^T\) describes the position of the reference point \(A_i\) with respect to the reference frame \(\{A\}\); then \(a_i\) is expressed as:

The Stewart-Gough-platform geometry was defined with two coplanar semiregular hexagons; the first corresponds to the base hexagon and the second to the movable platform. According to equations (1), the Stewart-Gough platform can be defined with five kinematic design parameters: \(r_b\) is the radius of the fixed base, \(r_a\) is the radius of the movable platform, \(\phi_b\) is the spacing angle of the vectors \(b_i\), \(\phi_a\) is the spacing angle of the vectors \(a_i\), and finally, \(z_0\) which is the center \(z\)-axes coordinate of the constant workspace. Consequently, a vector \(\lambda\) of design parameters is defined.

\[
\lambda = [r_a \ r_b \ \phi_a \ \phi_b \ z_0]^T
\]

(2)

The pose of the centroid \(\{A\}\) of the movable platform respect to frame \(\{B\}\) is described by six generalized coordinates.

\[
x = [x \ y \ z \ \alpha \ \beta \ \gamma]^T = \begin{bmatrix} p \ \theta \ | \ \end{bmatrix}
\]

(3)

According to [8], the 6 by 6 Jacobian matrix of Stewart-Gough platform:

\[
J(x, \lambda) = \begin{bmatrix} s_1^T \\ s_2^T \\ \vdots \\ s_6^T \\ \begin{bmatrix} R_{a1} \times s_1 \end{bmatrix}^T \\ \begin{bmatrix} R_{a2} \times s_2 \end{bmatrix}^T \\ \vdots \\ \begin{bmatrix} R_{a6} \times s_6 \end{bmatrix}^T \end{bmatrix}
\]

(4)

Remark that the Jacobian matrix depends on the design parameters \(\lambda\) and the pose \(x, \ s_i\), such as it is presented in Fig. 1. In the same way, the static model can be whitened as

\[
\tau = H(x, \lambda) \ g
\]

(5)

in which \(H(x, \lambda) = J^T(x, \lambda), \ \tau = [f \ m]^T\) is the total force and moment in the centroid \(\{A\}\) of the movable platform, and \(g = [g_1 \ \cdots \ g_6]^T\) the forces along the legs.

Since the Jacobian matrix establishes a kinematic relation between articular and generalized coordinates, the Jacobian matrix is useful in evaluating the performance for different design parameters and poses. However, when \(|H(x, \lambda)|\) is close to zero, there are problems in the kinematic performance, because the matrix is near a singular point and there may be numerical difficulties in calculating the inverse matrix; thus, the position accuracy is decreased, small errors in actuators cause a large error in the movable platform. Analogously, some loads in the movable platform cannot be controlled by the forces in the legs due to \(|H(x, \lambda)|\) being close to zero. This phenomenon is related to singularities within the complete workspace [9].

Hence, performance indices, to measure the kinematic condition over the workspace are essential to prevent the problems from carry to singularities. Accordingly, performance indices are used in optimal design to determine the optimal kinematic design parameters of parallel manipulators.

III. Kinematic Performance Index

Dexterity is an important factor to be considered in optimal design of parallel manipulators. Intuitively, dexterity is the skill to handle an object with accuracy. The dexterity refers to a kinematic characteristic of the manipulator that is measured in terms of the Jacobian matrix due to the physical meaning.

From the Singular Value Decompositions (SVD) of \(J(x, \lambda)\), we have six singular values \(\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_6 \geq 0\). The condition number is \(k(J) = \sigma_1 / \sigma_6\).

The condition number of Jacobian matrix \(k(J)\) has been used to measure the dexterity in a kinematic pose of a parallel manipulator. As a measure of dexterity it varies from 1 (isotropic condition) to infinite (singular condition). The condition number is related to the accuracy of the parallel manipulator in a specific configuration.

The condition number expresses the dexterity at an specific pose. The global kinematic indices use the condition number to express a dexterity measure of a workspace.
A. Global Conditioning Index

A commonly used criterion to evaluate the dexterity is the global conditioning index (GCI) [10]. The reciprocal of the condition number is used as the measure of local dexterity, thus $1/k(J)$ varies from 0 (singular condition) to 1 (isotropic condition). For a defined workspace w, the GCI is defined as:

$$GCI = \frac{\int_w 1/k(J) dw}{\int_w dw}$$ \hspace{1cm} (6)

The greater the global conditioning index, the more dexterity over the workspace, therefore the global conditioning index should be maximized.

B. Global Gradient Index

This index was first used by Kurtz and Hayward [11] and has also been used by Lee et al. [12]. This index is used to measure the uniformity of kinematic dexterity, the relative variation of this measure should be as small as possible to ensure an uniform dexterity over the workspace. Any small displacement of the movable platform would increase the singular condition, thus increasing the position error.

In order to verify uniformity of any function, the magnitude of its gradient is evaluated. Thus, a local measure of flatness of dexterity is given by $\|\nabla 1/k(J)\|$. Integrating this to obtain a global measure would not be a good idea. Hence, the global gradient index is defined as follows:

$$\nabla GCI = \max_w \|\nabla 1/k(J)\|$$ \hspace{1cm} (7)

GGI is approximated by calculating the maximum of local flatness of dexterity over the workspace. If GCI is zero, then the dexterity is uniform throughout the workspace. The local gradient is calculated numerically, because there is no analytic expression for this purpose. The gradient will be approximated by first-order difference equations.

The smaller the GGI, the less variation of dexterity over the workspace; therefore the global gradient index should be minimized.

C. Global Payload Index

Payload capability measures have been widely used in parallel manipulator design [13][14]. This index represents force transmission capability, thereby determining if the manipulator can support loads on the movable platform. In the equation (5), the relationship between the forces in legs and the force and total moment at the centroid of the movable platform was presented. Thus, $\tau = H(x, \lambda)g$. Using the left pseudoinverse, the minimum norm solution to this equation is

$$g = J(x, \lambda)(J(x, \lambda)^TJ(x, \lambda))^{-1}\tau$$ \hspace{1cm} (8)

From the singular value decomposition theorem, the bounds on $\|g\|$ can be established as

$$\|\tau\|/\sigma_{max} \leq \|g\| \leq \|\tau\|/\sigma_{min}$$ \hspace{1cm} (9)

Since the minimum force bound depends on the minimum singular value σ_{min}, this measure is used to calculate the payload capability; thus, $1/\sigma_{min}$ is the local value of payload capability, whose minimum value is 0 in the singular condition; and it does not have a maximum limit value bound. Maximizing this value would reduce the force along the legs. The global payload index (GPI) is defined as.

$$GPI = \frac{\int_w \sigma_{min} dw}{\int_w dw}$$ \hspace{1cm} (10)

Therefore, the larger the GPI, the bigger the force transmission in the movable platform.

Finally, according to the three global performance indices presented, the optimal design corresponds to selecting the design parameters simultaneously and over a required workspace, so that they:

- maximize dexterity, i.e., maximize GCI.
- maximize payload transmission capability, i.e., maximize GPI.
- maximize dexterity uniformity over the required workspace, i.e., minimize GGI.

Moreover, the conventional Jacobian matrix expresses a mixed relation of both translational and rotational degrees of freedom. The elements of the conventional Jacobian matrix have nonhomogenous physical units. Therefore, the use of performance indices such as the condition number of the Jacobian matrix may lack in physical meaning. To avoid the unit inconsistency problem, Gosselim [15] proposed a formulation of a dimensionally homogeneous Jacobian matrix of planar and spatial manipulator, the new condition number is invariant under of scaling of manipulator.

We we treat separately orientation and position dexterity [1], [4]. Let us rewrite the Jacobian matrix

$$J(x, \lambda) = [J_p \ J_R]$$ \hspace{1cm} (11)

Thus, $k(J_p)$ and $k(J_R)$ respectively give measures for position and orientation dexterity.

To guarantee position and orientation dexterity, they are applied in design by computing separately the global kinematic indices.

IV. Metodology

Optimal design aims to reach the optimal geometric configuration according to objective functions and geometric constraints. For parallel manipulators, optimization is addresses the maximization of kinematic dexterity and payload capability and the minimization of variation of kinematic dexterity over a required workspace. Since these three aspects are considered simultaneously, then a multi-objective optimization is considered.
A. Formulation of Parallel manipulator Optimization

Accordingly, the optimal design problem became in a multi-objective optimization problem, in which two or more conflicting objective functions are optimized subject to certain constraints. Based on kinematic performance indices, the optimal kinematic performance is achieved when dexterity and force transmission capability are maximized and variation of dexterity over a required workspace is minimized. The required workspace and geometric constraints are important issues in optimization.

For practical purposes, the required workspace \(w \) is hyper-parallelepiped with constant orientation, in which \(x_w = y_w = 2z_w \). Thus \(w = [-x_w/2, x_w/2] \times [-y_w/2, y_w/2] \times [-z_w/2, z_w/2] \times [0] \times [0] \times [0] \).

\[
\forall (x, \lambda) \quad v_i_{\text{min}}^o \leq x_{w} \leq v_i_{\text{max}}^o
\]

In which, \(v_i \) is the inverse kinematic. Moreover, restrictions on the design parameters are considered as functions of the dimensions of the required workspace. The geometric restriction is given by the following equality.

\[
\sum_{i=2}^{m} \lambda_i = x_w
\]

Thus, the multi-objective optimization to reach the optimal design parameters of the parallel manipulator is given by

\[
\max \{GCI(\lambda), GPI(\lambda)\} \quad \min \{GCI(\lambda)\}
\]

subject to

\[
\sum_{i=2}^{m} \lambda_i = x_m
\]

\[
r_a, n_b \in [r_{\text{min}}, r_{\text{max}}], \phi_a, \phi_b \in [\phi_{\text{min}}, \phi_{\text{max}}]
\]

\[
z_0 \in [z_{\text{min}}, z_{\text{max}}]
\]

\[
\forall x \in w
\]

\[
w = [-x_w/2, x_w/2] \times [-y_w/2, y_w/2] \times [-z_w/2, z_w/2] \times [0] \times [0] \times [0]
\]

To solve this optimization, genetic algorithms are reviewed in the next section.

B. Pareto front

The solutions are called non-determinant or Pareto-optimal solutions when an improvement in one objective requires a degradation of another. The multi-objective optimization can be formally represented as follows:

\[
\min \{z_1 = f_1(x), z_2 = f_2(x), \ldots, z_q = f_q(x)\}
\]

subject to

\[
g_j(x) \leq 0 \quad j = 1, 2, \ldots, m
\]

\(S \) is used to denote the feasible region in the decision space and \(Z \) is used to denote the feasible region in the criterion space.

\[
S = \{ x \in R^n \mid g_j \leq 0, j = 1, 2, \ldots, m, x \geq 0 \}
\]

\[
Z = \{ z \in R^q \mid z_1 = f_1(x), z_2 = f_2(x), \ldots, z_q = f_q(x), x \in S \}
\]

in which, \(z \in R^q \) is a vector of \(n \) decision variables, \(f(x) \) is the objective function and \(g_j \) are \(m \) inequality constraint functions.

A given \(z^0 \in Z \) is a Pareto solution if and only if there does not exist another point \(z \in Z \), such that

\[
z_k > z_k^0 \quad \text{for some} \quad k \in \{1, 2, \ldots, q\}
\]

\[
z_l \geq z_l^0 \quad \text{for all} \quad l \neq k
\]

C. Controlled Elitist Non-dominated Sorting Genetic Algorithm

Multi-Objective Evolutionary Algorithm (MOEA) are used to find the Pareto front. Aiming to find the real Pareto front, an evolutionary algorithm can be used to find multiple Pareto front solutions in a single simulation run.

The MOEA used to solve this optimization is the Controlled Elitist Non-dominated Sorting Genetic Algorithm (CENSGA), a variant of NSGA-II [16].

CENSGA [17] offers a quantitative control over the algorithm selection. Since, it is important to maintain the diversity of the population to converge to Pareto front, the activity of CE focused in two factors: smooth the elitism of the NSGA II, and limits the number of individuals on each Pareto front. Elitism in the NSGA-II is in two phases. Elitism in the CE has two steps. First, next generation population is selected from the best individuals using the Pareto criterion from the parent and offspring of present population. Then, the selection is performed with a random procedure. Furthermore, the number of individuals on each Pareto front is limited by a geometric decreasing function, in which the reduction rate is \(r \).

V. Simulation and discussion

Three simulations are performed using matlab optimization tool [18] and simulink™. The first simulation is single objective optimization to maximize the global conditioning index and examine the behavior of the other indices, GGI and GPI. The second simulation is multi-objective optimization to reach the optimal parameters, optimizing all performance indices simultaneously. In both simulations, only \(J_p(x, \lambda) \) is considered to compute the global performance indices, since the orientation over the hyper-parallelepiped workspace is constant. Finally, throughout the dynamical simulation of dynamics and control, position error analysis is performed to validate multi-objective optimization results.
A. Optimization of Global Conditioning Index

In the first example, the five design parameters of vector λ are optimized for obtaining the maximum GCI and therefore maximum dexterity on the Stewart-Gough platform shown in Fig 1. For this optimization, the behavior of global gradient GGI and global payload GPI are evaluated to determine how these indices vary when GCI is maximized in the hyper-parallelepiped workspace with constant orientation.

In this case, the optimization problem is formulated as follows.

$$\max_{\lambda} \{GCI(\lambda)\}$$
subject to

$$- r_a + r_b = 0.1 \text{m}$$
$$r_a, r_b \in [0.05 \text{m}, 0.2 \text{m}], \phi_a, \phi_b \in [3^\circ, 117^\circ]$$
$$z_0 \in [0.05 \text{m}, 0.25 \text{m}]$$
$$\forall \ x \in w$$
$$w = [-0.05 \text{m}, 0.05 \text{m}] \times [-0.05 \text{m}, 0.05 \text{m}] \times [-0.025 \text{m}, 0.025 \text{m}] \times [0^\circ] \times [0^\circ] \times [0^\circ]$$

After some preliminary simulations, we use the parameters in table I to run GAs.

The evolution of the design parameters to the best individual is shown in Fig. 2. Through a simultaneous adjustment of five parameters the design parameters converge to $\lambda_b = [0.096 \text{m} \ 0.197 \text{m} \ 9.5^\circ \ 116.8^\circ \ 0.108 \text{m}]^T$ and after 40 generations.

The evolution of the GCI as a function of the generations is presented in Fig. V-A, in which, the best GPI converged in 40 generations and its value is GCI=0.814. In Fig. V-A, we can appreciate how the GGI varies when GCI is maximized, remembering that the condition number is non-dimensional; GGI suffers a small decrease along the evolution of the optimization; the total decrease is 3 units per meter, from 17 to 14 units per meter. When GCI is maximized, GGI holds constant. Thus, with increasing dexterity, the uniformity of dexterity inside the hyper-parallelepiped workspace holds constant.

In the same way, for this optimization: the maximization of GCI, the evolution of the GCI, and the behavior of GPI is present in Fig. 4, when GCI is maximized, GPI decreases; therefore, when dexterity is maximized, the force transmission capability decreases.
We can conclude that GCI, GGI, and GPI have conflicts between them. In the following section, the performance indices: GCI, GGI, and GPI will be optimized simultaneously to find the optimal design parameters such that satisfy optimal the condition.

B. Multi-objective Optimization

Multi-objective optimization delivers a set of optimal solutions that corresponds to the Pareto front solution. This set of solutions is used in the design process to select one optimal design parameter.

\[
\max_{\lambda} \{GCI(\lambda), GPI(\lambda)\} \quad \min_{\lambda} \{GGI(\lambda)\}
\]

subject to

\[-r_a + r_b = 0.1m \]
\[r_a, r_b \in [0.05m, 0.2m] \quad \phi_a, \phi_b \in [3^\circ, 117^\circ] \]
\[z_0 \in [0.05m, 0.25m] \quad \forall \ x \in w \]
\[w = [-0.05m, 0.05m] \times [-0.05m, 0.05m] \times [-0.025m, 0.025m] \times [0^\circ] \times [0^\circ] \times [0^\circ] \] (18)

After some preliminary simulations, we use the parameters in table II to run CENSGA.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population size</td>
<td>50</td>
</tr>
<tr>
<td>Maximum of generations</td>
<td>66</td>
</tr>
<tr>
<td>Encoding type</td>
<td>Real</td>
</tr>
<tr>
<td>Selection strategy</td>
<td>Tournament</td>
</tr>
<tr>
<td>Tournament size</td>
<td>2</td>
</tr>
<tr>
<td>Crossover type</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Crossover ratio</td>
<td>1</td>
</tr>
<tr>
<td>Mutation ratio</td>
<td>1.0</td>
</tr>
<tr>
<td>Reduction factor r</td>
<td>0.7</td>
</tr>
</tbody>
</table>

TABLE II. Parameters used for running CENSGA

All possible and optimal solutions in decision space are found considering the three different objective functions simultaneously. In Fig. 5, the Pareto front is shown in criterion space. Values outside of the Pareto front may be unreachable (unimplementable) or solutions with lower performance (not optimal).

From the 43 different solutions obtained in MOO, we have selected eight solutions for each of the three objective functions (GCI, GPI, GGI), thus, \(f_i \) for \(i = 1, \ldots, 8 \). In table III the Pareto front solutions are presented in the criterion space.

In the same way, In table IV, the Pareto front \(f_i \) is given in decision space. It corresponds directly to the set of optimal design parameters for the Stewart-Gough platform.

We can observe how the kinematic proprieties vary along the Pareto front. This observation is useful for selecting design parameters from the optimal solution set.

TABLE III. Pareto front, criterion space

<table>
<thead>
<tr>
<th>(f_i)</th>
<th>GCI</th>
<th>GPI</th>
<th>GGI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0945</td>
<td>0.1944</td>
<td>3.1909</td>
<td>116.7970</td>
</tr>
<tr>
<td>0.0945</td>
<td>0.1939</td>
<td>3.0735</td>
<td>116.7970</td>
</tr>
<tr>
<td>0.0949</td>
<td>0.1944</td>
<td>3.1909</td>
<td>116.7970</td>
</tr>
<tr>
<td>0.0945</td>
<td>0.1951</td>
<td>4.8315</td>
<td>112.0357</td>
</tr>
<tr>
<td>0.0948</td>
<td>0.1949</td>
<td>4.5852</td>
<td>115.0846</td>
</tr>
<tr>
<td>0.0955</td>
<td>0.1949</td>
<td>6.3073</td>
<td>110.7758</td>
</tr>
<tr>
<td>0.0974</td>
<td>0.1976</td>
<td>10.5014</td>
<td>89.0835</td>
</tr>
<tr>
<td>0.0990</td>
<td>0.1981</td>
<td>12.1172</td>
<td>12.0812</td>
</tr>
</tbody>
</table>

TABLE IV. Pareto front, decision space

![Fig. 5. MOO Pareto front in criterion space](image1)

![Fig. 6. MOO Pareto front, GCI and GPI](image2)
In Fig. 6, when kinematic dexterity increases, the payload capability decreases. The ideal solution would be to maximize both proprieties, but for practical purposes, an intermediate solution must be chosen depending on the required working conditions. For example, if a high load must be carried by the manipulator and position accuracy is not preponderant, GPI must have maximum value, thus \(f_\text{S} \) would be selected.

Another important consideration is the uniformity of kinematic dexterity to ensure a high positioning accuracy over the required workspace. In Fig. 7 the Pareto front is showed. When the kinematic dexterity increases, the uniformity of kinematic dexterity decreases due to the increment of GGI. Again, we have two conflicting requirements, hence, to select the design parameters from the optimal solution set, the use of an intermediate solution is recommended. Thus, it is clear that the selection of the solution with higher GCI would not be useful because the kinematic dexterity would decrease considerably in the hyper-parallelpiped workspace limit.

In Fig. 8, we can see that increasing of payload capability also increases and the uniformity of kinematic dexterity over the required workspace. The optimal solution from Pareto front is \(f_\text{S} \), considering only two kinematic proprieties: payload capability and uniformity of dexterity. However, for selecting the optimal design parameters kinematic dexterity also has to be considered.

VI. Conclusions

This work presented a design procedure to reach kinematic parameters of a parallel manipulator, optimizing three global kinematic performance indices. Optimization design is a complex procedure because compulsory and, at the same time, contradictory objective functions have to be satisfied. Optimal criteria were established for the kinematic proprieties: payload capability, uniformity of the dexterity, and kinematic dexterity.

Consequently, the CENSGA was shown to be a robust optimization tool to reach optimal parameters for geometric configuration of parallel manipulators. The CENSGA provides the Pareto front, a set of optimal parameters to select the geometric configuration of the parallel manipulator in the design procedure.

Future work will relate to considering kinematic constraints of parallel manipulators in the model and optimization process. Among these kinematic constraints we can find: actuator limits, passive joint limits, and leg collision. In the same way, we will include additional geometric parameters to optimize different geometric architectures and not only standard form of the Stewart-Gough platform.

VII. Acknowledgments

The authors gratefully acknowledge the support of Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP.

References

